I wish the standard textbooks would devote a solid chapter on heuristic techniques; in real life, most students are probably more likely to have to implement a heuristic for some NP-hard problem than to have to implement a minimum spanning tree algorithm.

If you remove the word, ‘standard’, he may just have got his wish. From the press blurb for the Handbook of Approximation Algorithms and Metaheuristics:

Delineating the tremendous growth in this area, the Handbook of Approximation Algorithms and Metaheuristics covers fundamental, theoretical topics as well as advanced, practical applications. It is the first book to comprehensively study both approximation algorithms and metaheuristics. Starting with basic approaches, the handbook presents the methodologies to design and analyze efficient approximation algorithms for a large class of problems, and to establish inapproximability results for another class of problems. It also discusses local search, neural networks, and metaheuristics, as well as multiobjective problems, sensitivity analysis, and stability.

Browsing the table of contents, the reader encounters an entire section on heuristics, with chapters on local search, stochastic local search, neural networks, genetic algorithms, tabu search, simulated annealing, ant colony optimization and the like. The book is published by CRC, which stands for “Organization-That-Singlehandedly-Destroys-Rain-Forests-While-Making-Your-Biceps-Extremely-Strong”.

I generally have mixed feelings about CRC books: they are good reference texts, but tend to skim over content way too easily, and CRC has this unhealhy obsession with handbooks for everything. But for teaching heuristics, this might be an invaluable reference.

I should mention that the vast majority of the handbook deals with “proper” approximation algorithms, as well as applications to specific areas. The problem is that approximation algorithms is a fast moving field (though maybe not as fast as in the middle 90s), and so a handbook, being a static snapshot of the time, will get dated quickly.

]]>

Teacher’s day in my school was always a big event; teachers did not teach that day, and came to school mainly to be entertained and feted in an assembly with variety shows/skits/gentle mockery. Senior students would mind the junior classes. when I was younger, this meant a day of partying in school. When I became one of the seniors, this meant I was able to come to school in “civilian clothing” (most schools in Delhi had strict uniform policies) to boss over the younger students. Good times…

Now I’m a teacher myself (after a fashion), and find it both easy (and fashionable) to grumble about the lack of respect shown by students in the US, as compared to students in India. The truth of course is far more complicated than that. Schools in Delhi appear to have acquired many of the “bad traits” of the worst high schools here; my mother has taught in Delhi schools for nearly 20 years and has seen them acquire more “western” habits (which is a shorthand for more boy-girl interaction, less “studiousness”, less fear/reverence for the teachers, take your pick). And ultimately, as a university professor, I’m not even on the frontlines of education here in the US, and have no business complaining about the largely excellent students I teach.

In any case, here’s a cheer for the teachers I had; the ones who tolerated my brashness, general arrogance, and constant questions, and helped me reach the teaching pedestal I find myself at today. And here’s hoping that one day there’ll be some student who might think as fondly of me as I think of all my teachers long past.

]]>

This is the well-known k-median problem (which differs from the also popular k-means problem by the use of distances, rather than squares of distances). In a general metric space, the k-median problem is known to be NP-hard, as well as being hard to approximate to within arbitrary constant factor. The current best known approximation ratio for the k-median is ~~4, due to Charikar and Guha~~ 3 + eps, via a local search heuristic due to Arya, Garg, Khandekar, Meyerson, Munagala and Pandit (thanks, Chandra).

If the underlying metric is the Euclidean metric, then the problem complexity changes: in fact a PTAS for the Euclidean k-median can be obtained, due to the results of Arora, Raghavan and Rao, and then Kolliopoulos and Rao (who provide an almost-linear time algorithm). But as far as I am aware, there is still no NP-hardness proof for the Euclidean k-median problem, and I’d be interested in knowing if I am wrong here.

Note that the related problem of Euclidean k-means is known to be NP-hard from an observation by Drineas, Frieze, Kannan, Vempala and Vinay.

]]>

]]>

I view data analysis as summarization: use the machine to work with large quantities of data that would otherwise be hard to deal with by hand. I am also curious about what would the data suggest, and open to suggestions. Automated model selection can be used to list a few hypotheses that stick out of the crowd: I was not using model selection to select anything, but merely to be able to quantify how much a hypothesis sticks out from the morass of the null.

The response from several social scientists has been rather unappreciative along the following lines: “Where is your hypothesis? What you’re doing isn’t science! You’re doing DATA MINING !”

I had almost the same reaction a while back when I was visiting JPL: the climatologists there were horrified at the idea of trolling for patterns in climate data, and to the person, asked me the dreaded ‘But what is the science question?” question. Of course, given the general hot-potato-ness of climatology right now, one might sympathize with their skittishness.

Data mining is a tricky area to work in, and I’ve discussed this problem earlier. It’s a veritable treasure-chest of rich algorithmic problems, especially in high dimensional geometry, and especially over large data sets. However, it’s often difficult to get a sense of forward progress, especially since the underlying analysis questions often seem like elaborate fishing expeditions.

In that context, the distinction Aleks makes between confirmatory data analysis (check if the data validates or invalidates a hypothesis) and exploratory data analysis (play with the data to create a non-uniform distribution on plausible hypotheses) is quite helpful. It also emphasizes the interactive and very visual nature of data mining; interactive tools and visualizations are as important as the underlying analysis tools as well.

Update: Chris Wiggins points me to some of the earlier references to ‘data mining’. One of the most vituperative is a paper by Michael Lovell in 1983 in The Review of Economics And Statistics. This paper drips with scorn for ‘data miners’, but makes a point that is at the very least worthy of consideration: namely that because of the large dimensionality of the space of hypotheses that a data mining application typically explores (here couched in terms of explanatory variables for a regression), patterns with apparently high p-values might not actually be that significant (or stated another way, in high dimensional spaces, there are many seemingly rare patterns that aren’t that rare).

]]>

Juxtaposed with that is the fact that the Stein-enhanced version of Introduction to Algorithms does NOT contain the chapter on parallel algorithms that the old CLR used to have. In fact, I’ll probably use the chapter outline from CLR if I cover parallel algorithms at any level. I wonder what was the thinking behind removing the chapter on parallel methods, and whether this might be reversed in future editions.

Update: (that was quick! – thanks, Cliff): Tom Cormen writes in to explain the decision to remove the chapter on parallel algorithms:

Cliff Stein pointed me to this blog. Suresh asked why we removed the chapter on parallel algorithms when we wrote our second edition.

The chapter on parallel algorithms in the first edition was exclusively on PRAM algorithms. We wrote the second edition mostly during the late 1990s, into early 2001. At the time, PRAM algorithms were yesterday’s news, because the PRAM model was too far from what could be built realistically. We considered including algorithms for some other parallel computing model, but there was no consensus model at the time. We felt that the best decision was to just leave out parallel algorithms and use the pages for other new material.

I’m not surprised. It *was* true that by the time the 2nd ed arrived, PRAMs were yesterday’s news: in fact, streaming and external memory methods were “hotter” at the time. It’ll be interesting to see if multicore actually does spur new interest in parallel algorithms, and not just parallel architectures. In recent months I’ve participated in discussions about algorithm design for things like the Cell and the implied architecture of nVidia’s CUDA, and it’s surprising how often standard parallel algorithms methods like pointer jumping and the like are being reinvented.

What makes the new platforms more interesting is that there are features (especially streaming features) that make the mapping to “standard” PRAM models not so obvious. It may not merely be a mattter of shoehorning new systems into parallel models, but of extending and modifying the models themselves.

]]>

Greetings from the Kingdom of Denmark! The country of Vikings, meatballs, and football teams that just refuse to win, has hosted the Summer School on Data Stream Algorithms last week (August 20-23). The school was organized under the banner of MADALGO, a new research center dedicated to MAssive DAta ALGOrithms, set up in Aarhus University. The inauguration ceremony for the center took place on August 24, with several people giving invited lectures.

Muthu (one of the invited lecturers) has covered the inauguration ceremony, so I will skip the detailed description. Suffices to say, it was a pleasure to see that the Danish Research Foundation (or as the locals like to say, Grundforskningsfond) is eager to support an algorithmic research center with a budget of roughly $10M over 5 years, while its US counterpart spends about $7M per year for the entire Theory of Computing program. Did I mention that the population of Denmark is roughly 2% of that of US ?

Anyway, back to the summer school. We had 70+ participants altogether, including 5 lecturers. The school covered the following topics:

- The dynamic Sudipto Guha gave two lectures. The first lecture was on algorithms for clustering. Massive amounts of data were clustered, including metric data, graph data, and a few careless participants sitting in the first row. In the second lecture, Sudipto covered the “random stream model”, where the elements are assumed to be arriving in a random order, which circumvents the usual worst-case paranoia.

- The twin duo of T.S. Jayram and Ravi Kumar covered lower bounds: communication complexity, information complexity, and generally “everything you wanted to know but were afraid to ask”. It was the first time I have seen the details of the linear-space lower bound for estimating the L_infty distance, and I am happy to report that I understood everything, or at least that is what I thought at the time. Jayram and Ravi have also occasionally ventured into the land of upper bounds, covering algorithms for the longest increasing sequences and probabilistic data streams.

- The scholarly Martin Strauss gave an overview of the algorithms for finding frequent elements, heavy hitters (sometimes on steroids) and their more recent versions used in compressed sensing.

- I have covered the basic upper bounds for the L_p norm/frequency moments estimation, as well as the algorithms for geometric data (clustering, MST, matching), notably those based on core-sets. The latter topic was originally supposed to be covered by Sariel Har-Peled; however, the
~~dark forces~~highly enlighted and insightful geniuses of the INS [Sariel’s corrections] have jeopardized his plans. I guess the force was not strong enough with this one…

We also had an open problem session. Some of the problems were copy-pasted from the “Kanpur list”, but a few new problems were posed as well. The list will be available shortly on the school website, so sharpen your pencils, prepare your napkins, pour some coffee, and … give all of this to your students!

The lecture slides are also available on-line. If you spot any typos, let the lecturers know.

Overall, I think the school has been a success, perhaps with the notable exception of the weather: it started to rain promptly after the school has began, and it stopped when the school has ended. One has to admire the timing though.

SOCG 2009 will be held in Aarhus. See you then!

(Ed: But what about the beer report ?)

]]>

Via Ars Mathematica, a pointer to Keith Devlin’s column on a bizarre counter-version of Konig’s tree lemma: namely, if you have an uncountably large tree with countably large levels, then it is not necessarily true that an uncountable path must exist.

]]>

What I saw, Pietrucha knew, was what we all may see soon enough as we rush along America’s 46,871 miles of Interstate highways. What I saw was Clearview, the typeface that is poised to replace Highway Gothic, the standard that has been used on signs across the country for more than a half-century. Looking at a sign in Clearview after reading one in Highway Gothic is like putting on a new pair of reading glasses: there’s a sudden lightness, a noticeable crispness to the letters.

It’s a fascinating tale of 10 years of research and lobbying that went into replacing the fonts used on all the Federal highway signs in the U.S. I was driving along I-15 today and almost got into an accident trying to tell whether the local highway sign fonts had changed. Apart from the inside-baseball of how to design a font, always guaranteed to send a shiver through my spine, the story draws out the tale of how the team of designers got together, designed the font, and managed, after repeated lobbying, to convince the Department of Transportation to replace the original fonts with the new ones.

There was an amusing line in the article about American-style engineering:

The letter shapes of Highway Gothic weren’t ever tested, having never really been designed in the first place. “It’s very American in that way — just smash it together and get it up there,” says Tobias Frere-Jones, a typographer in New York City who came to the attention of the design world in the mid-1990s with his Interstate typeface inspired by the bemusing, awkward charm of Highway Gothic. “It’s brash and blunt, not so concerned with detail. It has a certain unvarnished honesty.”

If you remain unconvinced about the difference, look at the accompanying slideshow.

]]>

[NSF Director] Bement yesterday proposed a three-pronged strategy before the task force on transformative research. It was unanimously adopted by the task force on Tuesday and then unanimously adopted by the Board on Wednesday. Bement’s plan for will:

1. Infuse support of potentially transformative research throughout NSF and all of its programs;

2. Learn how to facilitate potentially transformative research; and

3. Lead the community through opportunities for potentially tranformative research proposal submissions.

[…]

To lead the community, Bement will embark on a three-year trial, during which NSF will replace small grants for exploratory research with a two-tiered “early-concept” award mechanism. Tier I will call for limited funding grants that are internally reviewed. Tier II will entail larger grants requiring additional levels of review. Further, NSF will create a working group to recommend implementation details; a mechanism to monitor and track impact and lessons-learned; and a method to advertise the new approach to the community.

]]>